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Abstract

In this paper, we propose a novel way to explore art gal-
leries, leveraging on various computer vision and Al-based
techniques. In the following sections, we show how a struc-
tured elaboration pipeline combined with a well-integrated
mixed reality scene can achieve very good results and pro-
vide a new way of exploring museums. We employed plenty
different techniques and strategies, exploring their advan-
tages and their drawback. Our Visual Museum Augmented
Reality Tour, VMART, uses YOLO object detection to local-
ize paintings and adjust perceptive distortion with classical
computer vision methods. We then use DINOvV2 to create
embeddings used to help the painting construction and con-
sent the retrieval. Finally, we use a modified EfficientNet
finetuned for style and genre classification. We designed
a new way of exploring a museum, by consenting a direct
interaction between the user and the paintings, with infor-
mation and similar artwork displayed on-demand.

1. Introduction

In recent times, deep learning methods demonstrated inter-
esting results in various fields. In particular CNN-based
architectures [14, 33, 38] have made success and pushed
the research on this topic. Task such as object detection
and classification achieved big improvement making them
easier, lighter and reliable. Tackling these tasks with super-
vised learning is not the only way; in fact, there are multiple
learning strategies including self-supervised learning that
almost reached weakly-supervised learning strategy perfor-
mance.

In our project we have to properly detect paintings in
museums, classify them and perform retrieval. While ex-
ploring the space of solutions we encountered some tricky
problem to deal with. For instance, generalizing well on
paintings detection task is not trivial, given the fact that ex-
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Figure 1. The figure shows the full pipeline. On the left part we
see the detection and transformation process. In the middle, the
feature extraction. In the right, we see the classification and the
retrieval

ists different border’s shape (e.g. circular, rectangular, etc.).

In the past, attention-centric [43] approaches was mainly
employed in Natural Language Processing (NLP) tasks.
Nowadays, thanks to the big improvement given by the re-
search, this approach is shifting also in computer vision,
creating Image Encoder [8] and variety of models that re-
lies on them [4, 5, 29].

Our researches led us to exploit different kinds of model
for each task. In the pre-processing task we evaluate and
select the best frame coming from the headset, i.e. META
Quest 3, that will be the more proper image in which can
be done the detection. In object detection task we locate
paintings with YOLO [30] and warped them to correct the
perspective distortion. Once the paintings are detected,
they are sent to DINO to verify if they are already been
projected as an object in the Unity scene, with which we
can interact. The interaction provides two responses; the



first one is the classification of the interested painting,
exploiting the ResNet [14, 39, 40]; the second one is the
retrieval of similar paintings extracted from the WikiArt
dataset, exploiting the DINOv2 [29]. The whole pipeline is
shown in 1.

codebase is

The complete publicly available at:

https://github.com/cvcs—-vmart/vmart.

2. Related Work

Object Detection. In the last years, object detection has
became one of the most investigated computer vision field
[46]. Nowadays there are plenty works and studies on
this specific sector and the task is almost solved. The
techniques used are various, including CNN-based meth-
ods [12, 13, 19, 30, 31] and attention-based ones [4]. This
approaches have demonstrated to be well designed and ca-
pable of achieving a good level of generalization even on
a big number of possible object classes [6, 23]. However,
there are some open challenges, like how to making faster
inference and reducing the number of needed parameters.
Further research investigates how to perform object detec-
tion in self-supervised or even unsupervised manner [44].

Transfer Learning and Finetuning. A key idea in mod-
ern computer vision is to first train deep neural networks on
huge datasets and then adjust them for specific tasks. Im-
ageNet [0] is a celebrity in the dataset field, and is used to
provide an effective pre-training for plenty different tasks.
Usually when talking about ImageNet, we are referring Im-
ageNet ILSCVR used in the famous ImageNet competition;
this version of the ImageNet dataset only contains 1.000
classes while the complete one have like 20.000 classes.
Later, “Big Transfer (BiT)” [21] [45] showed that training
even larger models on even bigger datasets led to better per-
formance and adaptability across many visual tasks. BiT
also stressed the importance of good “fine-tuning recipes”,
recommending simpler optimizers and proper learning rate
settings. Our project uses an EfficientNetV2-L model [39]
[40].

Adjusting these pre-trained models for new datasets and
tasks, called fine-tuning, is very important. While older
methods often just trained the last part of the network, it’s
now common to fine-tune the whole network, especially if
the new dataset is large enough. How you change the learn-
ing rate during this process is crucial. Many strategies exist,
like fixed rates, cosine annealing [26], and cyclical learning
rates [34]. Our fine-tuning method uses a special learning
rate schedule: it starts with a “warm-up” period where the
learning rate is zero for ¢; epochs, then it goes up steadily
for t, epochs, and then it goes up and down in cycles with a
period of t3. This helps the model learn effectively.

Categorizing artistic images by style and genre is hard
because “style” and “genre” can be abstract concepts. How-
ever, with deep learning, convolutional neural networks
have become much better at recognizing the complex vi-
sual patterns in art [15, 45]. Datasets like WikiArt [41].
Our work directly contributes to this area by showing that
advanced pre-trained models and our specific fine-tuning
methods can accurately classify artistic style and genre us-
ing the WikiArt dataset.

3. Approach

Our approach consists in detecting paintings within a mu-
seum environment, process it to adjust perspective and
project an interactive layer within the scene if the painting
result a new one after the re-identification phase. We then
let the user choose when to obtain similar images leverag-
ing on DINO and Faiss and obtaining information with our
classification on genre and style.

3.1. Headset and server communication loop

The communication between the computer vision pipeline
and the headset application is crucial and important as it is
the starting and ending part of the loop. The entire pro-
cess begins with the headset transmitting a video stream to
a Python server via a WebSocket connection. The server
communicates newly detected paintings back to the headset
using an HTTP request.

Before detailing approaches used to solve these tasks,
we will describe the mixed reality headset technologies em-
ployed.

Interacting with the environment with Meta SDK for
Unity. The Passthrough Camera is Meta’s most recent
API release, designed to facilitate interaction with the native
cameras of their headsets. This API allow capturing video
stram from the frontal cameras, applying on device com-
puter vision algorithms, placing 3D elements in the world
space, and more. Depth API is a support API that enables
the possibility to raycast into the user’s field of view (FOV)
enabling mixed reality interaction. Furthermore Scene API
allow scene-aware experiences by mapping the rooms be-
fore its utilization.

Real-time pipeline. The Figure 2 illustrates our real-time
pipeline. A video stream from the headset is taken and sent
to a python server that acquires the data. We use a Web-
Socket for this communication to ensure a lossless byte
stream. This is important for maintaining lossless frame
quality and for potentially sending additional coupled data.
After the complete computer vision pipeline, the final stage
sends the bounding boxes of the detected paintings back to
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Figure 2. Headset loop

the headset, including their unique IDs. This communica-
tion is done via an HTTP request from the last python ser-
vice to the headset. Finally, on the headset side, the Depth
API projects these bounding boxes into 3D space.

This approach works very well but it has a critical con-
straint: the entire loop must operate very quickly otherwise
the headset movement can cause the bounding boxes to fall
outside the user’s field of view.

Non Real-time pipeline. The next two approaches are

based on the idea of using the headset’s historical pose (po-

sition and rotation) to project and place bounding boxes at a

later time. However, knowing only the headset’s historical

pose is insufficient for accurate ray casting. We used the left
eye camera and this are its parameters:

* (e, ye) = (639.7092,480.8897): This is the principal
point, which represents the exact center of the image sen-
sor where the camera’s optical axis ideally intersects.

* (fz, fy) = (866.6758,866.6758): These are the focal
lengths, expressed in pixels.

e s = (: This is our skew coefficient. A value of zero indi-
cates that the pixel axes of the camera sensor are perfectly
perpendicular.

* (w,h) = (1280,960): These are the dimensions of our
acquired image. This is not an intrinsic parameter.

Depth API can still be used to estimate painting place-
ment by simply raycasting the FOV with a matrix of rays.
Without prior knowledge of a painting’s location, the in-
tersection points with the real world are used to determine
the wall’s orientation and position during data acquisition.
However, this method has a significant drawback: it’s ex-
tremely computational intensive, causing visible delays.

Scene API offers an alternative, allowing us to hit with
our rays a 3D model of the room from any direction. This
solution requires a room scan, but it provides a zero lag ex-
perience.

Figure 3. A debug layer is placed to show the detected painting

Figure 4. A detected painting with its information panel

Painting interaction. Once a layer is placed over a de-
tected painting in the real world, the user can interact with
it using the controller’s trigger. This action brings up a float-
ing panel right in front of him. This panel displays the genre
and style of the painting, as given by our ResNet model,
along with the top 3 most similar paintings from our re-
trieval model.

3.2. Painting Detection

Providing a good painting detection is an hard challenge to
face with. Given an image our goal is identify all the in-
stances of painting class. The result of this step will affect
the entire pipeline, so we spent time in developing a reliable
and efficient way to perform the task. The real-time con-
straint and the complexity of the environment have created
the needs of a model able to perform real-time object detec-
tion on detailed image acquired from an unreliable source
also affected by egocentric motion that can completely de-
stroy the image quality.

Painting detection plays a key role in our context and
doesn’t have an absolute solution; since a lot of environ-
ment variables and domain-specific needs can affect some
solution effectiveness making certain solution more suitable
then others we explored different possible solution before
making a choice. In particular, we explored both classical
computer vision approach based on elementary operation
(e.g. gradients and morphological operator) and more mod-



Figure 5. This figure shows some qualitative results of YOLO
detection. Note that our system discard those detection that are
close to borders, avoiding the projection of slice of paintings.

ern approach, based on deep learning techniques.

3.2.1. Classical Computer Vision Object Detection

In this section, we discuss our work on thinking and devel-
oping a deep learning-free pipeline for process images and
detect paintings.

Hough-based Detection. The research stared from here,
investigating how we can identify an arbitrary number of
paintings inside a single image. This first solution relies on
Hough transformation [10], and in particular on one of its
variant. Hough Transformation [10, 17] is a very common
technique used to identify straight lines in images and we
used it for extracting the border of paintings.

We begin the Hough-based detection pipeline by resiz-
ing the input image to a standard dimension while keeping
the ratio between height and width. We also set a maximum
dimension value that guides the resizing process. We then
apply a filter on the resized image, usually a Gaussian blur
or a Bilateral Filter [42], and then applying on this output
Canny operator [3] to produce edges. Now we used Hough
to identify and collect straight edges lines in polar coordi-
nates and then project those lines into our coordinates sys-
tem. Unfortunately this approach provides not precise lines,
because we have to manually extend it, and without a prior
knowledge on the paintings dimension it is almost impos-
sible to guess a correct dimension that results suitable for
both big and small paintings. We then moved our attention
to a slightly different method, Hough Lines Probabilistic
[28]. This Hough algorithm variant provides lines that are
already in euclidean form and, assuming well defined edges,
it provides lines with a reasonable length. Before continu-
ing, we filter out oblique lines using a threshold on their
slope. At this point we created two cluster based on angu-
lar coefficient, to discriminate horizontal and vertical lines.
This was necessary because we want the interception points
that should be placed around painting corners. Regretfully,
Hough provides very noisy results, containing several re-
dundant lines, and, despite the effort spent in develop non-

maximum suppression [16] algorithm for both lines and in-
terception points (e.g. a non-maximum suppression based
on custom convolution operator), we doesn’t manage to get
clean results suitable for bounding box extraction.

Another weakness of this approach consist lack of reli-
ability; this model was susceptible to all those object that
exhibit some kind of straight lines producing instable re-
sults across different scenarios. It is also totally ineffective
while detecting circular paintings.

Contours-based Detection. The contours-based paint-
ings detection shares some pre-processing seen in the
previous detection, but fully relies on a specific OpenCV
operation, “findContours”. This method is an enriched
version of the Suzuki-Abe algorithm for finding contours
that distinguish inner border from outer border.

We start by applying the same ratio-preserving resiz-
ing technique seen previously, and then proceed with some
smoothing filter (e.g. Gaussian blur or Bilateral filter).
Next, we apply Canny to compute edges and then apply
in these edges the morphological closing operator i.e. a
dilation followed by an erosion. This little adjustment
results in minimal visual change, but it significantly affects
the result of the next operations. At this point we apply
Suzuki-Abe algorithms obtaining collections of points that
represent some polygons. Now we filter out the noisy
contours by thresholding on polygons area. At this point,
we reach a critical stage of the process; in fact, we need
to discard noisy contours or fit them to a regular size. We
explored two different strategies, one that tries to fit those
contours to a rectangular dimension, and the other one,
made from scratch that tries to approximate an arbitrary
polygon and then evaluate how rectangular it is.

The first attempt uses a well-established OpenCV func-
tion, boundingRect, a straightforward operator that extracts
the smallest axis-aligned rectangle containing all the con-
tour points. Although naive, it is still effective.

The other approach consist in computing the convex hull
of the contour and then approximate this polygon with an-
other polygon with less vertex that falls in an approximation
range based on the convex hull perimeter. If the produced
approximation is composed by four vertexes, it continues in
the pipeline, where we evaluate how much it is rectangular.
At this point we select the triplets (p1, p2, p3) of connected
vertexes and define:

Ul =p1— o
— 9]
V2 = P3 — P2

This two vectors starts from p, and goes towards p; and
p3. We now compute the cosine and use it to evaluate the
regularity of the rectangle. The evaluation process consists



of quantifying the deviation of the polygon’s angles from
90 degrees. We repeat this process for each contours. Each
rectangles is saved with a score associated, that indicates
how regular was the polygon.

In order to be resistant to domain shift and to handle
images of different sizes, including fine-grained or low-
resolution images, we managed to repeat the whole detec-
tion process for a set of Gaussian blur and Bilateral filter
hyperparameters. For each set of hyperparameters, we pro-
duce the bounding box and save it. We then sort by the
number of bounding boxes found in descending order, and
subsequently by the score, also in descending order; by do-
ing this, we should obtain the best output based on heuristic.
This multi-scale approach allow us to be less dependent on
painting composition.

This methods works relatively well, but it present some
critical issue due to the complexity of the task; even with
this method we are not able to catch non-rectangular paint-
ings, and we are susceptible on the environment construc-
tion (i.e. ropes that hold up painting are detected as con-
tours).

3.2.2. Deep learning-based Detection

After accurate researches on classical computer vision ap-
proach, we decided to migrate through a more robust object
detection algorithm. The advent of deep learning-based ob-
ject detection systems, based on CNN [12, 13, 24, 30, 31]
and also on Transformer [4], has made possible providing
a generalized and domain-agnostic understanding of all the
characteristics of known objects, leveraging on both recep-
tive field and attention mechanism [43]. For our purposes,
we found a good tradeoff between architectural complexity,
computation required and data need. In particular, we chose
a CNN-based model, YOLO [30].

Painting Detection with YOLO. We chose the nano-
sized model of YOLO11 models family [19]. Since we
doesn’t had so much time and data, we leveraged on al-
ready existing datasets; in particular we trained and tested
the detection in three different datasets [1, 2, 37] found on
Roboflow (see experiments section for further details); all
those dataset contains around 1k images. Our train config-
uration includes batch size of 32 images of size 640, and
it does 100 epochs at most, with a patience of 20 epochs.
This results in around 32 steps per epoch. Then, we use 10
epochs of warmup, and then, a cosine annealing schedule
[25]. We also used dropout [35] of 0.4. After several opti-
mizer changes [20, 27, 32], we chose to let YOLO decides
the best optimizer. During the dataset creation we applied
some data augmentation technique such as random blurring,
auto orient, random saturation and brightness variation. In
addition we let YOLO apply the usual online augmentation
technique modifying the impact of some of them (hsv_S,
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Figure 6. The figure shows an example of input that go through
the detection system and is then processed by the transformation
pipeline, producing the images on the right.

mosaic, scale, perspective). In particular, we slightly in-
creased the frequency of scale and perspective distortions.
This adjustment is expected to be impactful in our domain,
where egocentric motion can significantly affect the per-
ceived scale and orientation of paintings. By training in this
way, the model exhibit a good generalization and is able to
catch almost all the paintings, even the smaller one.

However, this high level of generalization and robustness
against very unlikely paintings may leads to errors; for in-
stance, detecting just a slice of a painting or a very distant
one can be a problem.

In our specific case, we don’t need to recognize either
the furthest or the incomplete paintings. We handled this
problem by limiting a bit the detection. At first, we rise the
confidence required to output a prediction, avoiding the ma-
jority of noisy recognition including the smaller paintings
that usually comes out with around 0.85 confidence.

The partially visible paintings instead, has been removed
by filtering out the detections that results too close to the
image borders.

3.3. Transformations

In the previous section, we faced the challenge of identify
and provide contours or bounding boxes for paintings. As
mentioned above, we chose to employ the proposed deep
learning-based approach to perform this detection. Unfor-
tunately, YOLO and most of the existing method for object
detection provides bounding boxes. As we now, bounding
boxes are not the best way to express a precise contour; the
problem is that a bounding box remains rectangular regard-
less of the actual shape of the object and the orientation of
the acquisition point wrt the object itself. This limitation
can be misleading for further tasks (similarity, classifica-
tion and retrieval). Despite those task relies on deep learn-



ing approach that absolutely overtake this kind of problem,
we want to produce a standard and reliable representation
for the images, in order to be even more resilient. We fi-
nally addressed this requirements combining a contour de-
tection algorithm with an homography-based image trans-
formation.

Contour Extraction and Homography Warping. This
approach consist in applying the already seen method for
contour extraction based on Suzuki-Abe algorithm, but
within a extremely simplified scenario. The subsequent
step, is warping the image leveraging on perspective trans-
formation. Due to the existing complexity and considering
those scenarios with small detected paintings, we opt for
best effort operations.

We begin this step with a set of bounding boxes given
from the detection module. For each of those bounding
boxes, we apply a padded crop on the complete image to
extract the painting. This cropping strategy provides some
leeway for the contours extraction phase. After the crop
has been made, we perform the usual ratio-preserving re-
size. Now, starts the contours extraction process; briefly
we smooth the painting, preparing it for Canny. After this,
we close some little gaps with morphological closing op-
erator and give it to “findContours” that extract the con-
tours. We now apply our convex hull-based polygon ap-
proximation. At this point we sort the contours by area in
descending order and keep just the largest. This should be
the painting contour or in worst case scenario the contour
of the cropped image itself. Then, if the area is at least
half of the image area, we proceed by sorting the contour
points (top-left, top-right, bottom-right, bottom-left) and es-
timating the optimal homography matrix with “findHomog-
raphy” that compute the transformation matrix for mapping
the four source points to the four angles of a new image.
Finally, we compute the perspective transformation using
“warpPerspective” [11]. To be able of computing the cor-
rect homographic transformation we need at least those four
points; recalling we want to estimate this matrix:

X’ hoo hor ho2| | X
Y'| = |hio hin hia| |Y 2
1 hgo ha1 1 1

where (X', Y”) indicates the destination and (X,Y") the
source (in homogeneous coordinates). A destination point
can be expanded by doing the matrix multiplication and do-
ing the conversion from homogeneous to inhomogeneous
coordinates:

hooX1 + ho1Y1 + ho2

hoo X1 + ha Y1 +1 3)
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Figure 7. This figure illustrates the entire transformation pipeline
from extraction of edges to image warping.

This is the expression of the inhomogeneous destination
coordinates for the first point. Having four of this points,
results in a system of eight equations in eight unknowns
(the h;; values), thus forming a solvable system.

With this transformation pipeline we provide better in-
puts for re-identification phase, avoiding all the problems
related to perspective and rotation. As shown in Figure 6
the perspective correction is done only when the produced
contour is clear and allow to correctly identify the painting
corners. A qualitative result is provided in 7.

3.4. Embedding Construction and Storing

Once the paintings are detected and warped, are sent to DI-
NOv2 [29] employed to extract high-performance visual
features useful, in our case, to verify if a painting is al-
ready detected previously and to do retrieval. To facili-
tate the achieving of these tasks’ objectives, Faiss [9, 18]
proves valuable, enabling efficient similarity searches be-
tween vectors in high-dimensional spaces, i.e. what DINO
extracts.

DINO feature extraction. There are eight models avail-

able; in this project is used the smaller one (ViT-S).
The approach is very simple:

1. A painting image that is detected and warped is pro-
cessed and is given as input to DINOv2;

2. As output it returns a vector of dimension (1, T, E),
where T is the number of patch tokens + 1 which is the
CLS token, and E is the embedding dimension, i. e. 384
in ViT-S. Subsequently, the mean is calculated along the
first dimension, resulting in a vector of size (1, 384);

3. The vector is normalized with the L2-Normalization:

“4)
where
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FAISS search.

1. The index of the paintings already detected is loaded, it
is computed the Euclidean distance between the normal-
ized vector and all vectors of the index;

2. If the distances are bigger than the threshold (hyperpa-
rameter), or if the index is empty, i.e. no paintings are
detected previously, then the painting is constructed in
the Unity scene and the index is updated;

3. Else the painting is discarded.

The normalization part is not mandatory due the fact that
the Euclidean distance [7] doesn’t require normalization to
compute the distance between the painting and the vectors
in the faiss index, but with normalization the distances are
more readable and the chose of a good threshold becomes
easier. Furthermore, when the faiss index is an instance of
IndexFlatL2 (i.e. this case), the Euclidean distance is em-
ployed to determine similarity. However, if IndexFlatIP is
used, the calculation involves the inner product, that is like
to perform cosine similarity [22, 36] if the vectors are nor-
malized.

Threshold Selection. In the 5-th step of the method de-
scribed before, there is the employ of a threshold to de-
cide what paintings are already detected. The selection
of a threshold is challenging because setting it too low
might lead to misidentifying a previously observed paint-
ing if viewed from a different angle, whereas setting it too
high could result in omitting paintings that aren’t detected
but are sufficiently similar to those detected to fall within
the threshold. Our method involves analyzing the WikiArt
dataset, where paintings are categorized by style, to deter-
mine in-class similarity for each group. Given the fact that
could be some duplications of the same paintings, and that
we don’t know how many paintings there are in each class,
we considered the 25th percentile distance for each element
inside the class and compute the mean between these dis-
tances. This is done for each class and then is computed the
mean between the results. Next, we examined five paint-
ings from various angles, perform similarity across these
perspectives, and calculated the average similarity for each
painting. Finally, we combined these results by computing
an overall average, aiming to define a robust threshold suit-
able for the task.

3.5. Style and Genre classification with a ResNet

Task and Dataset. An important step of our pipeline is
the classification of genre and style of paintings, provid-
ing useful information to users. For our purposes, we uti-
lized the WikiArt dataset [41], a collection of 80,000 paint-
ings. The WikiArt dataset consists of 27 style classes and 11
genre classes. Examples of styles include Impressionism,
Cubism, Baroque, and Romanticism, while genre includes
categories such as illustration, abstract painting, landscape,

and portrait. The genre classification also includes an “Un-
known Genre” label.

The Net. We started our work with a ResNet [14], a mile-
stone in the story of CNNs. In fact, its residual block are still
a widely diffuse practice to work with. Initially, we exper-
imented with standard ResNet architectures; however, their
performance resulted suboptimal for our specific task. We
then transitioned to EfficientNetV2-L, pre-trained on Ima-
geNet. We observed that this new employed architecture
outperform the previous ResNet configurations.

EfficientNets were developed to challenge the common
practice of randomly increasing model’s depth, number of
channels per layer, and input resolution hoping in improve-
ments. Instead, they proposed a balanced scaling approach
across these three dimensions. This process is known as
“Compound Scaling”. ¢ is the compound coefficient that
uniformly scales the model’s width, depth, and resolution.
Meanwhile, «, 8 and 7y are constants that are determined to
find the most optimal scaling. These exponent values are
usually found through practical methods like grid search or
an optimization process.

depth: d = a®
width: w = 3%
resolution: 7 = ~?
st.a-fB24%2x2
a>1
B=>1
y=>1

EfficientNetV2 was developed to speed up the training pro-
cess by considering advances in new GPUs and recent re-
search discoveries, while also incorporating effective regu-
larization.

Classification Approach. As mentioned, we need to dis-
criminate paintings on two classes, style and genre. To
achieve this, we removed the default final MLP layer of
the EfficientNetV2-L by replacing it with two MLP heads,
one dedicated to genre classification and the other to style
classification. Each of these heads is made of three hidden
layers, each containing 512 neurons, followed by an out-
put layer corresponding to the respective number of classes.
For regularization, we applied a dropout [35] rate of 40%
before the input to each head layer and incorporated a
weight decay of 10~°. To enhance performance, the en-
tire EfficientNetV2-L model was fine-tuned with a learning
rate of 10~°. Conversely, the learning rate for each individ-
ual head was fine-tuned as detailed in the “Related Works”
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Figure 8. Architecture for classification with DINOv2. It uses the
frozen DINO image encoder and a linear layer that projects the
representation into the class space, using either the CLS token, the
average of patch tokens, or a combination of both.

section, with a maximum learning rate of 10—3. Prior to
training, we removed the “Unknown Genre” label from the
dataset and implemented a sampler to assign weights to
each image based on the frequency of its associated style
within the entire dataset. We will refer at this implementa-
tion as EfficientNetV2-L.

3.6. Retrieval

It is decided to adopt the WikiArt dataset to do retrieval
with the paintings we encounter in the museum. Firstly all
images of the dataset are sent to DINOvV2, for the feature
extraction and embedding creation, then they are added in a
IndexFlatL2 index saved as all_paintings.index. For the re-
trieval part the approach is very similar to what described in
the 3.4 Embedding Construction and Storing. It is con-
sidered the embedding of the painting of interest captured in
the museum and is computed the similarity with the paint-
ings inside all_paintings.index. There will given the five
(what we requested, but any number is fine, e.g. the first
more similar element, the top ten, etc.) more similar paint-
ings that lives inside the index. These paintings are sent to
the VR headset.

Figure 9. The figure shows a qualitative results for retrieval. The
retrieved images are displayed ordered by their similarity wrt the
input one.

4. Experiments

DINO as Classificator. In the beginning we decided to
rely on a ResNet to do our classification. However a
ResNet, since it’s trained with cross entropy, tends to learn
transformed features that results helpful in distinguish be-
tween genres and styles. So, it is possible that a CNN tries
to extract not only the semantical features but also some
low level features. We asked ourself what happens if we
use a self-supervised feature extractor like DINOv2, that
has not been trained on that classification task. This was an
interesting experiment because we are exploring how much
effective can be a zero-shot classification based just on se-
mantical features.

During our exploration, we built a model that uses a
frozen image encoder and then a linear layer to project on
the classification dimension. This is shown in 8. But what’s
the best features to do this classification? In fact our DI-
NOV2 variant produces 257 enriched outputs, obtained us-
ing the attention [43]. The first is the CLS token and the
other 256 are the transformed input patches. We conducted
3 different classification tests, using different feature vec-
tors:

1. Just the CLS token.
2. The average of the transformed patches.
3. The average of both transformed patches and CLS.

The results shown in 3 does not shows a clear winner,
since the three feature vectors seems to have a similar im-
pact. However taking the average of both patches and CLS
ends up in a slightly high accuracy on the style while losing
some points in genre.

Note that we trained each model separately; for instance,
considering the CLS version, trained and tested a model for
the style and one for the genre.

YOLO Ablation Study. In this section, we provides our
ablation study on our YOLO11n model. As shown in 1 we
removed or substituted each of the component of chosen
baseline. We reported mAP50, mAP50-95 and F1 score.
The mean average precision metrics reports the level of
IoU in the validation set while F1 gives an indication of
recall/precision tradeoff. Our baseline achieves 91.1% in
mAP50-95, 98.1% in mAP50 and 95.5% of F1 score. In
fact, turning off dropout lies to a slight improvement in
mAP50 and F1, but we decided to stick to our baseline since
we give more importance to mAP50-90 that measures in a
more severe way the IoU; it produces a mean of the mAP
over 10 thresholds of IoU, providing a more complete eval-
uation, rewarding the more accurate detections.

Object Detection Dataset. The dataset choice and its
quality its clearly a crucial point. For our purposes we
needed a dataset containing a decent amount of paintings



Variant mAP50-95 (%) mAPS0 (%)  Fl

Baseline 90.1 98.6 959
No Warmup 89.0 97.3 947
Multi Scale 88.9 96.4 945
No Augment 88.5 97.8 95.7
No Cosine 89.5 97.7 948
Adam 88.3 984 953
SGD 90.0 97.9 94.6
Our proposal 91.1 98.1 955

Table 1. YOLO Ablation Study.

located in museums or art galleries. Finding a good dataset
that fit the task, it’s not so trivial; in fact, we spent several
hours in doing this. Due to the lack of time and resources
we abandoned quickly the idea of building our dataset, mov-
ing our attention to Roboflow, that offers countless datasets
constructed by community. For our specific case, we found
3 datasets [1, 2, 37]. Those 3 dataset contains around 1k
images each. We first trained leveraging on the well look-
ing one [1]. After several test, once found a good hyperpa-
rameters configuration for the model, we started some tests
exploiting the other two datasets. The results are shown in
10 and they underline the difference in training with differ-
ent dataset. The mAP50-95 on the validation set is much
more higher with our chosen dataset [1] wrt the discarded
datasets [2, 37].

5. Results
5.1. Models results

Style and Genre recognition. We present two experi-
ments focused on style and genre recognition. The first
aims to identify which experimental setups lead to our per-
formance. The second compares various models and their
variations on this task.
e Tab. 2 aim to show how different processing steps affect
performance. The baseline is a vanilla EfficientNetV2-L.
e Tab. 3 shows different classification performance while
changing the backbone. We tested with both a semantical
feature extraction (DINO) and a more class-driven feature
extraction (EfficientNet). The baseline is a Multi-head
ResNet-18.

5.2. Case Study Evaluation

We express our sincere gratitude to the Galleria Estense in
Modena for their support in testing our pipeline within their
rooms. We had a chance of testing the whole project inside
a real scenario and we tested on a large variety of paint-
ings of various shapes, dimensions, lighting conditions, and
represented figures. Below we present the results obtained
during the test through pictures. In addition, there is a video

metrics/mAP50-95(B)
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Figure 10. This figure shows the mAP50-90 across training on
different datasets.

where you can better see the results, and the 1 section for
the observations.

6. Conclusion

In this paper, we introduced VMART (Visual Museum Aug-
mented Reality Tour), a new mixed reality application de-
signed to improve how people explore art galleries using
computer vision. Our work shows that by combining object
detection, accurate image adjustments, feature recognition,
and classification, we can create an engaging and informa-
tive museum visit.

Our main achievements include an optimal YOLO detec-
tion, followed by a process that adjusts perspective. We also
used DINOV2 to recognize paintings users have seen before
and to find similar artworks from a large dataset. A key part
of our project also involved training an EfficientNetV2-L
model to discriminate paintings by style and genre. Testing
at Galleria Estense in Modena was very helpful. It con-
firmed that our system works well in real museum settings,
even with different painting shapes, sizes, and lighting.

While VMART shows good results, we note some lim-
itations. The pipeline results generally fast; it can be af-
fected by quick headset movements, sometimes causing the
detected boxes to shift slightly. The method that uses pre-
scanned room data, result in a smooth experience but re-
quires an initial setup.

For future work, we plan to tackle these limitations. We
also aim to consent the user to have a direct role within the
classification and the retrieval by adding direct interaction
through natural language instructions.


https://youtu.be/lxSlbR4vHUM

Style Genre

Variant
a(%) P(%) R(%) o) P(%) R(%)
Baseline 57.4 - - 66.3 - -
Dropout 60.5 - - 67.2 - -
Dropout, weight decay 642 642 64.2 70.1 69.6 70.0
Dropout, weight decay, finetune 61.2 - - 70 - -
Dropout, weight decay, finetune, Ir scheduler  64.1 65.2 64.1 71.3 71.5 71.3
EfficientNetV2-L (Our) 65.6 66.3 65.6 80.5 80.9 80.5
Table 2. Different test of 2 head EfficientNet training
val/dfl_loss val/cls_loss val/box_loss
0.85 ep 04 Step 0.5 om0,
(a) Distributed Focal Loss (b) Classification Loss (c) Box Loss
Figure 11. YOLO validation results.
Variant Style a (%) Genre a (%)
Baseline 59.9 69.0
x2 EfficientNetV2-L 66.4 81.9
x2 DINOV2 cls 554 68.4
x2 DINOV2 patch 56.1 68.8
x2 DINOV?2 patch + cls 57.3 67.9
EfficientNetV2-L (Our) 65.6 80.5

Table 3. Genre and Style accuracy comparison between different
models. Our proposal is an EffienctNetV2-L with two heads.

Figure 13. Photo taken at Galleria Estense

Figure 12. Photo taken at Galleria Estense . .
Figure 14. Photo taken at Galleria Estense
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Figure 19. Photo taken at Galleria Estense

Figure 16. Photo taken at Galleria Estense

Figure 21. Photo taken at Galleria Estense

Painting 0.91

Painting 0.95

Painting 0.95

Figure 18. Photo taken at Galleria Estense Figure 22. Photo taken at Galleria Estense
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VMART: Rethinking Art Gallery Experience through Painting Detection,
Classification and Retrieval

Supplementary Material

7. Additional Observations on Galleria Estense

Following extensive testing at the Galleria Estense, we
present our observations and encountered issues.

The application on the viewer device is designed to
continuously transmit data streams to a server, which then
processes the data and responds with detected paintings.
While this functionality generally performs well, the
object detection system occasionally misidentifies other
elements, such as screens, posters, or windows, as paint-
ings. Consequently, most tests were conducted by toggling
the connection and sending segment data in a controlled
environment.

The Scene API was employed as a supplementary
tool to enable asynchronous placement of paintings; how-
ever, it exhibited limitations. The primary challenge stems
from the Scene API’s design, which is optimized for small,
domestic environments. The scale of the gallery pushed its
capabilities to their limits:

» The gallery walls are notably high, and during room map-
ping, the VR system consistently truncated the mapped
area at a maximum height from the floor.

* The room mapping system is intended to map an entire
floor, allowing for room additions once doors are recog-
nized. However, the large doors within the gallery were
not consistently recognized, preventing us from mapping
the entire floor plan.

e In larger rooms, the system would occasionally cease
mapping after covering only a portion of the room. Sub-
sequent manual adjustments were required to complete
the mapping process.

Data acquisition is performed through the left eye’s
perspective, which does not precisely correspond to the
actual view through the headset. Furthermore, the acquired
images possess a narrower Field of View (FOV) compared
to the real cameras.

Irregular shapes or highly detailed frames may not be
consistently recognized.

For distant paintings, the placement of the recognition
layer might be slightly shifted relative to the painting’s true

center.

DINO rarely exhibit not correct behaviors in re-

Figure 23. Paintings not detected

Figure 24. Paintings detected multiple times

Figure 25. Case of not correct re-identification

Figure 26. Ceiling problem

identification phase; in 24 DINO doesn’t recognize
the already identified paintings and tells the visor that he
found a new painting, or in 25 DINO doesn’t discriminate
the two painting that are almost identical in semantic.
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